Objective

A longitudinal study with the assessment of the influence of MMSAS (Multidimensional Motivations to Study Abroad) on BSAS (Brief sociocultural adaptation) and drunk behaviour.

Data from: Aresi, Giovanni; Moore, Simon C.; Marta, Elena (2021), “The longitudinal health behaviours of European study abroad students sampled from forty-two countries and across three-waves”, Mendeley Data, V3, doi: 10.17632/585d2wdmtd.3

Method: PLS-SEM R’s SEMinR package.

Although somewhat concrete and observable, behaviours (health, sustainability or market related) are not necessarily directly measurable constructs. They can manifest in different ways, depending on the person, for example. And, to quantify it, we use latent or composite variables, depending on the scale, evaluating, for example, the frequency of manifestation of such modes.

This case explores a model using the behavioural construct ‘drunk behaviour’ as a composite variable.

Because the variable is composite, we use PLS-SEM (Partial Least Squares-SEM, a specific type of SEM), using the package semin.

Data acquisition

data<-read_sav('Aresi2021.sav')

Model definition

measurement model

Note that, in this case, - Being multifaceted, the ‘variables’ (like drunk behaviour) are assessed by a combination of indicators associated with the variety of manifestations of how such behaviour. It makes up a ‘formative construct’ (also called ‘composite variable’). - The MMSAS (Multidimensional Motivations to Study Abroad) is prompted as influencing both drunk behaviours at times 1 and 2 directly. - By comprising a longitudinal study, the interrelatedness of the three assessments of the same latent variable is unavoidable.

corres<-Hmisc::rcorr(as.matrix(data[,c(paste0("MMSAS_",c(11,15,19:22,24,25,27)),
                                       names(data[,c(34,36,42:43,50,51,78)]),
                                       names(data[,c(85,87,90,91,93,98,126)]),
                                       names(data[,c(229,230,233,234,236)]),
                                      names(data[,c(133:135,139:142,149,151,159,175:177,179)])) ]))
flattenCorrMatrix <- function(cormat, pmat) {
  ut <- upper.tri(cormat)
  data.frame(
    row = rownames(cormat)[row(cormat)[ut]],
    column = rownames(cormat)[col(cormat)[ut]],
    cor  =(cormat)[ut],
    p = pmat[ut]
    )
}
flatCorr<-flattenCorrMatrix(corres$r,sapply(corres$P,function(x){round(x,3)}))
flatCorr[flatCorr$p<0.05,]
##                       row                column         cor     p
## 2                MMSAS_11              MMSAS_19  0.20807827 0.000
## 3                MMSAS_15              MMSAS_19  0.12179652 0.000
## 4                MMSAS_11              MMSAS_20  0.16671987 0.000
## 5                MMSAS_15              MMSAS_20  0.10766180 0.001
## 6                MMSAS_19              MMSAS_20  0.68704401 0.000
## 7                MMSAS_11              MMSAS_21  0.18681643 0.000
## 8                MMSAS_15              MMSAS_21  0.17379178 0.000
## 9                MMSAS_19              MMSAS_21  0.71512321 0.000
## 10               MMSAS_20              MMSAS_21  0.62349157 0.000
## 12               MMSAS_15              MMSAS_22  0.33202372 0.000
## 13               MMSAS_19              MMSAS_22  0.11088208 0.001
## 14               MMSAS_20              MMSAS_22  0.09876363 0.003
## 15               MMSAS_21              MMSAS_22  0.14449405 0.000
## 17               MMSAS_15              MMSAS_24  0.26052203 0.000
## 18               MMSAS_19              MMSAS_24  0.10852007 0.001
## 19               MMSAS_20              MMSAS_24  0.14355454 0.000
## 20               MMSAS_21              MMSAS_24  0.13564145 0.000
## 21               MMSAS_22              MMSAS_24  0.59802467 0.000
## 23               MMSAS_15              MMSAS_25  0.47960643 0.000
## 24               MMSAS_19              MMSAS_25  0.07570008 0.023
## 26               MMSAS_21              MMSAS_25  0.10595370 0.001
## 27               MMSAS_22              MMSAS_25  0.29242141 0.000
## 28               MMSAS_24              MMSAS_25  0.26928593 0.000
## 29               MMSAS_11              MMSAS_27 -0.07257259 0.029
## 30               MMSAS_15              MMSAS_27  0.46736475 0.000
## 34               MMSAS_22              MMSAS_27  0.26225007 0.000
## 35               MMSAS_24              MMSAS_27  0.22846216 0.000
## 36               MMSAS_25              MMSAS_27  0.55475341 0.000
## 47               MMSAS_15         T1_LY_alcohol -0.09127138 0.006
## 48               MMSAS_19         T1_LY_alcohol  0.07626718 0.022
## 53               MMSAS_25         T1_LY_alcohol -0.11047177 0.001
## 54               MMSAS_27         T1_LY_alcohol -0.13584552 0.000
## 57               MMSAS_15             T1_Friday  0.12071058 0.000
## 61               MMSAS_22             T1_Friday  0.07510146 0.024
## 63               MMSAS_25             T1_Friday  0.12678098 0.000
## 64               MMSAS_27             T1_Friday  0.19615585 0.000
## 66          T1_LY_alcohol             T1_Friday -0.40250991 0.000
## 68               MMSAS_15           T1_Saturday  0.09497584 0.004
## 72               MMSAS_22           T1_Saturday  0.07459760 0.025
## 74               MMSAS_25           T1_Saturday  0.09360457 0.005
## 75               MMSAS_27           T1_Saturday  0.13233155 0.000
## 77          T1_LY_alcohol           T1_Saturday -0.44244486 0.000
## 78              T1_Friday           T1_Saturday  0.35710607 0.000
## 80               MMSAS_15     T1_Binge_drinking  0.14029368 0.000
## 84               MMSAS_22     T1_Binge_drinking  0.09857368 0.003
## 86               MMSAS_25     T1_Binge_drinking  0.18660837 0.000
## 87               MMSAS_27     T1_Binge_drinking  0.22534466 0.000
## 88              T1_Sweets     T1_Binge_drinking -0.10268723 0.002
## 89          T1_LY_alcohol     T1_Binge_drinking -0.29767021 0.000
## 90              T1_Friday     T1_Binge_drinking  0.38862750 0.000
## 91            T1_Saturday     T1_Binge_drinking  0.37780707 0.000
## 93               MMSAS_15   T1_DrunkDrunkenness  0.10075318 0.003
## 94               MMSAS_19   T1_DrunkDrunkenness -0.07387252 0.027
## 99               MMSAS_25   T1_DrunkDrunkenness  0.16064913 0.000
## 100              MMSAS_27   T1_DrunkDrunkenness  0.23367496 0.000
## 101             T1_Sweets   T1_DrunkDrunkenness -0.09349145 0.005
## 102         T1_LY_alcohol   T1_DrunkDrunkenness -0.18502149 0.000
## 103             T1_Friday   T1_DrunkDrunkenness  0.26781004 0.000
## 104           T1_Saturday   T1_DrunkDrunkenness  0.23906828 0.000
## 105     T1_Binge_drinking   T1_DrunkDrunkenness  0.50814130 0.000
## 108              MMSAS_19           T1_Drugs_YN -0.07423333 0.029
## 113              MMSAS_25           T1_Drugs_YN  0.07362089 0.031
## 114              MMSAS_27           T1_Drugs_YN  0.10679206 0.002
## 115             T1_Sweets           T1_Drugs_YN -0.07930846 0.020
## 117             T1_Friday           T1_Drugs_YN  0.09200096 0.007
## 118           T1_Saturday           T1_Drugs_YN  0.07274607 0.033
## 119     T1_Binge_drinking           T1_Drugs_YN  0.21546125 0.000
## 120   T1_DrunkDrunkenness           T1_Drugs_YN  0.11622213 0.001
## 130             T1_Sweets             T2_Sweets  0.61075675 0.000
## 134     T1_Binge_drinking             T2_Sweets -0.10486038 0.004
## 136           T1_Drugs_YN             T2_Sweets -0.12835283 0.001
## 138              MMSAS_15         T2_LM_alcohol -0.20672449 0.000
## 142              MMSAS_22         T2_LM_alcohol -0.12551132 0.001
## 144              MMSAS_25         T2_LM_alcohol -0.20565654 0.000
## 145              MMSAS_27         T2_LM_alcohol -0.22373038 0.000
## 147         T1_LY_alcohol         T2_LM_alcohol  0.60163805 0.000
## 148             T1_Friday         T2_LM_alcohol -0.42637998 0.000
## 149           T1_Saturday         T2_LM_alcohol -0.41066301 0.000
## 150     T1_Binge_drinking         T2_LM_alcohol -0.30858087 0.000
## 151   T1_DrunkDrunkenness         T2_LM_alcohol -0.20780140 0.000
## 161              MMSAS_25          T2_Wednesday  0.12732588 0.000
## 162              MMSAS_27          T2_Wednesday  0.14781951 0.000
## 164         T1_LY_alcohol          T2_Wednesday -0.15940386 0.000
## 165             T1_Friday          T2_Wednesday  0.21499875 0.000
## 166           T1_Saturday          T2_Wednesday  0.14762794 0.000
## 167     T1_Binge_drinking          T2_Wednesday  0.21692159 0.000
## 168   T1_DrunkDrunkenness          T2_Wednesday  0.20144866 0.000
## 169           T1_Drugs_YN          T2_Wednesday  0.11400766 0.002
## 171         T2_LM_alcohol          T2_Wednesday -0.20301660 0.000
## 173              MMSAS_15           T2_Thursday  0.14087250 0.000
## 177              MMSAS_22           T2_Thursday  0.08913901 0.014
## 179              MMSAS_25           T2_Thursday  0.10277325 0.004
## 180              MMSAS_27           T2_Thursday  0.13821348 0.000
## 182         T1_LY_alcohol           T2_Thursday -0.20858473 0.000
## 183             T1_Friday           T2_Thursday  0.29108980 0.000
## 184           T1_Saturday           T2_Thursday  0.21820365 0.000
## 185     T1_Binge_drinking           T2_Thursday  0.24176131 0.000
## 186   T1_DrunkDrunkenness           T2_Thursday  0.24848709 0.000
## 187           T1_Drugs_YN           T2_Thursday  0.09299185 0.012
## 189         T2_LM_alcohol           T2_Thursday -0.28587180 0.000
## 190          T2_Wednesday           T2_Thursday  0.16527286 0.000
## 192              MMSAS_15           T2_Saturday  0.16098073 0.000
## 194              MMSAS_20           T2_Saturday  0.07446933 0.040
## 195              MMSAS_21           T2_Saturday  0.08415513 0.020
## 198              MMSAS_25           T2_Saturday  0.12871652 0.000
## 199              MMSAS_27           T2_Saturday  0.18347935 0.000
## 201         T1_LY_alcohol           T2_Saturday -0.36032942 0.000
## 202             T1_Friday           T2_Saturday  0.32128385 0.000
## 203           T1_Saturday           T2_Saturday  0.42923785 0.000
## 204     T1_Binge_drinking           T2_Saturday  0.32082704 0.000
## 205   T1_DrunkDrunkenness           T2_Saturday  0.25070681 0.000
## 208         T2_LM_alcohol           T2_Saturday -0.51764861 0.000
## 209          T2_Wednesday           T2_Saturday  0.17189503 0.000
## 210           T2_Thursday           T2_Saturday  0.24193039 0.000
## 212              MMSAS_15      T2_N_shot_spirit  0.10973024 0.003
## 219              MMSAS_27      T2_N_shot_spirit  0.08271904 0.023
## 221         T1_LY_alcohol      T2_N_shot_spirit -0.11588033 0.001
## 222             T1_Friday      T2_N_shot_spirit  0.11833972 0.001
## 223           T1_Saturday      T2_N_shot_spirit  0.09494923 0.009
## 224     T1_Binge_drinking      T2_N_shot_spirit  0.24818324 0.000
## 225   T1_DrunkDrunkenness      T2_N_shot_spirit  0.17095008 0.000
## 228         T2_LM_alcohol      T2_N_shot_spirit -0.18837478 0.000
## 229          T2_Wednesday      T2_N_shot_spirit  0.08643241 0.018
## 230           T2_Thursday      T2_N_shot_spirit  0.16647633 0.000
## 231           T2_Saturday      T2_N_shot_spirit  0.16692939 0.000
## 233              MMSAS_15        T2_Cannabis_YN  0.10222366 0.005
## 237              MMSAS_22        T2_Cannabis_YN  0.07747565 0.034
## 239              MMSAS_25        T2_Cannabis_YN  0.12805502 0.000
## 240              MMSAS_27        T2_Cannabis_YN  0.15809339 0.000
## 241             T1_Sweets        T2_Cannabis_YN -0.10092397 0.006
## 242         T1_LY_alcohol        T2_Cannabis_YN -0.12646246 0.001
## 243             T1_Friday        T2_Cannabis_YN  0.16945902 0.000
## 244           T1_Saturday        T2_Cannabis_YN  0.13474585 0.000
## 245     T1_Binge_drinking        T2_Cannabis_YN  0.26072382 0.000
## 246   T1_DrunkDrunkenness        T2_Cannabis_YN  0.22909250 0.000
## 247           T1_Drugs_YN        T2_Cannabis_YN  0.17790716 0.000
## 248             T2_Sweets        T2_Cannabis_YN -0.08149113 0.025
## 249         T2_LM_alcohol        T2_Cannabis_YN -0.13999271 0.000
## 250          T2_Wednesday        T2_Cannabis_YN  0.13220007 0.000
## 251           T2_Thursday        T2_Cannabis_YN  0.21672497 0.000
## 252           T2_Saturday        T2_Cannabis_YN  0.16909344 0.000
## 253      T2_N_shot_spirit        T2_Cannabis_YN  0.19390976 0.000
## 255              MMSAS_15                BPAS_1  0.24142104 0.000
## 256              MMSAS_19                BPAS_1  0.13388005 0.000
## 257              MMSAS_20                BPAS_1  0.13945555 0.000
## 258              MMSAS_21                BPAS_1  0.18434702 0.000
## 259              MMSAS_22                BPAS_1  0.15947533 0.000
## 260              MMSAS_24                BPAS_1  0.15512518 0.000
## 261              MMSAS_25                BPAS_1  0.24835652 0.000
## 262              MMSAS_27                BPAS_1  0.22149147 0.000
## 267     T1_Binge_drinking                BPAS_1  0.12661522 0.000
## 269           T1_Drugs_YN                BPAS_1  0.08747776 0.018
## 271         T2_LM_alcohol                BPAS_1 -0.11424850 0.002
## 273           T2_Thursday                BPAS_1  0.12085183 0.001
## 274           T2_Saturday                BPAS_1  0.14642864 0.000
## 275      T2_N_shot_spirit                BPAS_1  0.07978843 0.029
## 276        T2_Cannabis_YN                BPAS_1  0.10983795 0.003
## 278              MMSAS_15                BPAS_2 -0.14029807 0.000
## 285              MMSAS_27                BPAS_2 -0.13343226 0.000
## 294         T2_LM_alcohol                BPAS_2  0.10155361 0.005
## 295          T2_Wednesday                BPAS_2 -0.09296094 0.010
## 299        T2_Cannabis_YN                BPAS_2 -0.08541837 0.019
## 300                BPAS_1                BPAS_2 -0.17990378 0.000
## 302              MMSAS_15                BPAS_5 -0.21695442 0.000
## 308              MMSAS_25                BPAS_5 -0.11860811 0.001
## 309              MMSAS_27                BPAS_5 -0.12623475 0.000
## 311         T1_LY_alcohol                BPAS_5  0.08753555 0.016
## 318         T2_LM_alcohol                BPAS_5  0.14013853 0.000
## 319          T2_Wednesday                BPAS_5 -0.10658197 0.003
## 320           T2_Thursday                BPAS_5 -0.10275051 0.004
## 321           T2_Saturday                BPAS_5 -0.07339299 0.042
## 324                BPAS_1                BPAS_5 -0.26892102 0.000
## 325                BPAS_2                BPAS_5  0.44604738 0.000
## 327              MMSAS_15                BPAS_6 -0.18565100 0.000
## 333              MMSAS_25                BPAS_6 -0.09058984 0.012
## 334              MMSAS_27                BPAS_6 -0.11385211 0.002
## 339     T1_Binge_drinking                BPAS_6  0.07274365 0.045
## 349                BPAS_1                BPAS_6 -0.23884618 0.000
## 350                BPAS_2                BPAS_6  0.42333523 0.000
## 351                BPAS_5                BPAS_6  0.71603620 0.000
## 353              MMSAS_15                BPAS_8  0.25597481 0.000
## 354              MMSAS_19                BPAS_8  0.07862029 0.030
## 356              MMSAS_21                BPAS_8  0.09125592 0.012
## 357              MMSAS_22                BPAS_8  0.08987709 0.013
## 358              MMSAS_24                BPAS_8  0.08523208 0.018
## 359              MMSAS_25                BPAS_8  0.19432750 0.000
## 360              MMSAS_27                BPAS_8  0.24647492 0.000
## 361             T1_Sweets                BPAS_8  0.09076326 0.012
## 365     T1_Binge_drinking                BPAS_8  0.07540936 0.038
## 368             T2_Sweets                BPAS_8  0.07767400 0.032
## 369         T2_LM_alcohol                BPAS_8 -0.09574987 0.008
## 370          T2_Wednesday                BPAS_8  0.12374107 0.001
## 371           T2_Thursday                BPAS_8  0.11238116 0.002
## 372           T2_Saturday                BPAS_8  0.09713734 0.007
## 373      T2_N_shot_spirit                BPAS_8  0.09128053 0.012
## 374        T2_Cannabis_YN                BPAS_8  0.14873891 0.000
## 375                BPAS_1                BPAS_8  0.51878748 0.000
## 376                BPAS_2                BPAS_8 -0.38527453 0.000
## 377                BPAS_5                BPAS_8 -0.42462878 0.000
## 378                BPAS_6                BPAS_8 -0.39440599 0.000
## 397          T2_Wednesday              T3_Fruit  0.13391658 0.019
## 406                BPAS_8              T3_Fruit  0.11657991 0.042
## 415              MMSAS_27         T3_Vegetables  0.09732272 0.043
## 435              T3_Fruit         T3_Vegetables  0.67275868 0.000
## 443              MMSAS_25             T3_Sweets  0.09583213 0.046
## 464              T3_Fruit             T3_Sweets  0.14862890 0.002
## 489                BPAS_1            T3_Tuesday -0.11365170 0.047
## 493                BPAS_8            T3_Tuesday -0.12620651 0.027
## 510     T1_Binge_drinking          T3_Wednesday  0.09829035 0.042
## 525              T3_Fruit          T3_Wednesday -0.11753118 0.014
## 527             T3_Sweets          T3_Wednesday -0.11389855 0.017
## 528            T3_Tuesday          T3_Wednesday  0.30186620 0.000
## 560            T3_Tuesday           T3_Thursday  0.31880626 0.000
## 561          T3_Wednesday           T3_Thursday  0.26032390 0.000
## 564              MMSAS_19             T3_Friday -0.09887548 0.039
## 592             T3_Sweets             T3_Friday -0.10745242 0.025
## 594          T3_Wednesday             T3_Friday  0.14225738 0.003
## 595           T3_Thursday             T3_Friday  0.14583719 0.002
## 604              MMSAS_27     T3_N_mixed_drinks -0.11531612 0.017
## 607             T1_Friday     T3_N_mixed_drinks -0.11571984 0.017
## 630             T3_Friday     T3_N_mixed_drinks  0.14482862 0.003
## 662            T3_Tuesday        T3_Drunkenness  0.14564159 0.002
## 663          T3_Wednesday        T3_Drunkenness  0.25455954 0.000
## 664           T3_Thursday        T3_Drunkenness  0.22764361 0.000
## 665             T3_Friday        T3_Drunkenness  0.24018512 0.000
## 666     T3_N_mixed_drinks        T3_Drunkenness  0.15600840 0.001
## 699          T3_Wednesday           T3_BYAACQ_8  0.14340957 0.003
## 701             T3_Friday           T3_BYAACQ_8  0.16511706 0.001
## 703        T3_Drunkenness           T3_BYAACQ_8  0.29529706 0.000
## 706              MMSAS_19            T3_Q125_24 -0.12507628 0.011
## 731                BPAS_8            T3_Q125_24 -0.16827973 0.004
## 736          T3_Wednesday            T3_Q125_24  0.12630138 0.010
## 737           T3_Thursday            T3_Q125_24  0.19905472 0.000
## 738             T3_Friday            T3_Q125_24  0.17479003 0.000
## 739     T3_N_mixed_drinks            T3_Q125_24  0.12377228 0.012
## 740        T3_Drunkenness            T3_Q125_24  0.22077268 0.000
## 741           T3_BYAACQ_8            T3_Q125_24  0.23781340 0.000
## 761           T2_Thursday        T3_Cannabis_YN  0.12813406 0.031
## 774          T3_Wednesday        T3_Cannabis_YN  0.17104568 0.000
## 775           T3_Thursday        T3_Cannabis_YN  0.14201563 0.004
## 776             T3_Friday        T3_Cannabis_YN  0.12494998 0.011
## 777     T3_N_mixed_drinks        T3_Cannabis_YN  0.20780191 0.000
## 778        T3_Drunkenness        T3_Cannabis_YN  0.23469386 0.000
## 779           T3_BYAACQ_8        T3_Cannabis_YN  0.14304015 0.004
## 780            T3_Q125_24        T3_Cannabis_YN  0.16824050 0.001
## 783              MMSAS_19 T3_Cannabis_frequency  0.10030216 0.042
## 800           T2_Thursday T3_Cannabis_frequency  0.14859856 0.012
## 813          T3_Wednesday T3_Cannabis_frequency  0.17012898 0.001
## 814           T3_Thursday T3_Cannabis_frequency  0.13726799 0.005
## 815             T3_Friday T3_Cannabis_frequency  0.11484298 0.019
## 816     T3_N_mixed_drinks T3_Cannabis_frequency  0.25808567 0.000
## 817        T3_Drunkenness T3_Cannabis_frequency  0.17572605 0.000
## 819            T3_Q125_24 T3_Cannabis_frequency  0.17188846 0.000
## 820        T3_Cannabis_YN T3_Cannabis_frequency  0.81587140 0.000
## 822              MMSAS_15    T3_Drugs_frequency -0.10556981 0.032
## 826              MMSAS_22    T3_Drugs_frequency -0.09720097 0.049
## 828              MMSAS_25    T3_Drugs_frequency -0.10274107 0.037
## 835   T1_DrunkDrunkenness    T3_Drugs_frequency  0.10950050 0.028
## 844                BPAS_1    T3_Drugs_frequency -0.14472332 0.014
## 852            T3_Tuesday    T3_Drugs_frequency  0.20802998 0.000
## 853          T3_Wednesday    T3_Drugs_frequency  0.14066226 0.004
## 856     T3_N_mixed_drinks    T3_Drugs_frequency  0.10939942 0.027
## 857        T3_Drunkenness    T3_Drugs_frequency  0.21840021 0.000
## 859            T3_Q125_24    T3_Drugs_frequency  0.12824909 0.009
## 860        T3_Cannabis_YN    T3_Drugs_frequency  0.21394644 0.000
## 861 T3_Cannabis_frequency    T3_Drugs_frequency  0.15943255 0.001

The problem is that the package does not reverse automatically negatively correlated indicators to compute, for example, Chrombach’s Alpha. So, reversing…

#reverse 
data$BPAS_1=8-data$BPAS_1
data$BPAS_8=8-data$BPAS_8

measurements<-constructs(
  reflective('MMSAS',paste0("MMSAS_",c(1:3, 13:18, 23, 24,26))),
  composite('DrunkB_t1',c('T1_Binge_drinking','T1_DrunkDrunkenness'), weights = mode_A),
  composite('DrunkB_t2',c("T2_Binge_drinking","T2_Drunkenness" ), weights = mode_A),
  reflective('BSAS',paste0("BSAS_",c(1:11))),
  composite('DrunkB_t3',c("T3_Binge_drinking","T3_Drunkenness"), weights = mode_A)
  )

causal model

modelSEM <- relationships(
  paths(from = c("MMSAS",'BSAS','DrunkB_t1','DrunkB_t2'),        to = c("DrunkB_t3")),
  paths(from = c("MMSAS",'BSAS','DrunkB_t1'),        to = c("DrunkB_t2")),
  paths(from = "MMSAS",        to = c("DrunkB_t1",'BSAS')),
  paths(from = "BSAS",        to = c("DrunkB_t1"))
)

SEM

fit_SEM=estimate_pls(data=data,measurement_model=measurements,structural_model=modelSEM)
## Generating the seminr model
## All 908 observations are valid.

Path coefficients

fit_summary<-summary(fit_SEM,fit.meas=TRUE)
## Warning in sqrt(rho %*% t(rho)): NaNs produced
fit_summary$paths
##           DrunkB_t3 DrunkB_t2 DrunkB_t1  BSAS
## R^2           0.012     0.531     0.055 0.059
## AdjR^2        0.008     0.530     0.052 0.058
## MMSAS        -0.011     0.089     0.216 0.243
## BSAS          0.022     0.100     0.050     .
## DrunkB_t1     0.156     0.684         .     .
## DrunkB_t2    -0.123         .         .     .

Bootstraped results

boot_mobi_pls <- bootstrap_model(seminr_model = fit_SEM,
                                 nboot = 50,
                                 cores = 5)
## Bootstrapping model using seminr...
## Bootstrapping encountered a WARNING:  8 bootstrap iterations failed to converge (possibly due to PLSc). 
## These failed iterations are excluded from the reported bootstrap statistics.
## SEMinR Model successfully bootstrapped
boot_summary<-summary(boot_mobi_pls)
boot_summary$bootstrapped_paths
##                          Original Est. Bootstrap Mean Bootstrap SD T Stat.
## MMSAS  ->  BSAS                  0.243          0.248        0.038   6.457
## MMSAS  ->  DrunkB_t1             0.216          0.214        0.037   5.923
## MMSAS  ->  DrunkB_t2             0.089          0.091        0.034   2.616
## MMSAS  ->  DrunkB_t3            -0.011         -0.034        0.057  -0.189
## BSAS  ->  DrunkB_t1              0.050          0.062        0.038   1.297
## BSAS  ->  DrunkB_t2              0.100          0.112        0.033   2.991
## BSAS  ->  DrunkB_t3              0.022          0.027        0.040   0.560
## DrunkB_t1  ->  DrunkB_t2         0.684          0.675        0.043  16.085
## DrunkB_t1  ->  DrunkB_t3         0.156          0.197        0.106   1.463
## DrunkB_t2  ->  DrunkB_t3        -0.123         -0.146        0.084  -1.465
##                          2.5% CI 97.5% CI
## MMSAS  ->  BSAS            0.165    0.303
## MMSAS  ->  DrunkB_t1       0.136    0.280
## MMSAS  ->  DrunkB_t2       0.024    0.144
## MMSAS  ->  DrunkB_t3      -0.126    0.062
## BSAS  ->  DrunkB_t1        0.000    0.119
## BSAS  ->  DrunkB_t2        0.050    0.172
## BSAS  ->  DrunkB_t3       -0.041    0.100
## DrunkB_t1  ->  DrunkB_t2   0.584    0.753
## DrunkB_t1  ->  DrunkB_t3  -0.011    0.445
## DrunkB_t2  ->  DrunkB_t3  -0.286    0.008
specific_effect_significance(boot_seminr_model = boot_mobi_pls,
                             from = "MMSAS",
                             through = c("DrunkB_t1"),
                             to = "DrunkB_t2",
                             alpha = 0.05)
##  Original Est. Bootstrap Mean   Bootstrap SD        T Stat.        2.5% CI 
##     0.14794820     0.14451272     0.02680431     5.51956857     0.09560063 
##       97.5% CI 
##     0.19637456
boot_summary$bootstrapped_paths
##                          Original Est. Bootstrap Mean Bootstrap SD T Stat.
## MMSAS  ->  BSAS                  0.243          0.248        0.038   6.457
## MMSAS  ->  DrunkB_t1             0.216          0.214        0.037   5.923
## MMSAS  ->  DrunkB_t2             0.089          0.091        0.034   2.616
## MMSAS  ->  DrunkB_t3            -0.011         -0.034        0.057  -0.189
## BSAS  ->  DrunkB_t1              0.050          0.062        0.038   1.297
## BSAS  ->  DrunkB_t2              0.100          0.112        0.033   2.991
## BSAS  ->  DrunkB_t3              0.022          0.027        0.040   0.560
## DrunkB_t1  ->  DrunkB_t2         0.684          0.675        0.043  16.085
## DrunkB_t1  ->  DrunkB_t3         0.156          0.197        0.106   1.463
## DrunkB_t2  ->  DrunkB_t3        -0.123         -0.146        0.084  -1.465
##                          2.5% CI 97.5% CI
## MMSAS  ->  BSAS            0.165    0.303
## MMSAS  ->  DrunkB_t1       0.136    0.280
## MMSAS  ->  DrunkB_t2       0.024    0.144
## MMSAS  ->  DrunkB_t3      -0.126    0.062
## BSAS  ->  DrunkB_t1        0.000    0.119
## BSAS  ->  DrunkB_t2        0.050    0.172
## BSAS  ->  DrunkB_t3       -0.041    0.100
## DrunkB_t1  ->  DrunkB_t2   0.584    0.753
## DrunkB_t1  ->  DrunkB_t3  -0.011    0.445
## DrunkB_t2  ->  DrunkB_t3  -0.286    0.008

visualization

plot(boot_mobi_pls)
<div id="htmlwidget-1e77aa8128ae60a01122" style="width:672px;height:480px;" class="grViz html-widget"></div>
<script type="application/json" data-for="htmlwidget-1e77aa8128ae60a01122">{"x":{"diagram":"digraph G {\n\n// ----------------------\n// General graph settings\n// ----------------------\ngraph [\ncharset = \"UTF-8\",\nlayout = dot,\nlabel = \"\",\nfontsize = 24,\nfontcolor = black,\nfontname = helvetica,\nrankdir = LR,\nlabelloc = t,\nsplines = TRUE\nbgcolor = transparent\n]\n\n// --------------------\n// The structural model\n// --------------------\nsubgraph sm {\nrankdir = LR;\nnode [\nshape = ellipse,\ncolor = black,\nfillcolor = white,\nstyle = filled,\nfontsize = 12,\nfontcolor = black,\nheight = 1.05,\nwidth = 1.19166666666667,\nfontname = helvetica,\nfixedsize = true\n]\n\"MMSAS\" [label=<<B>MMSAS <\/B>>, shape = ellipse]\n\"BSAS\" [label=<<B>BSAS <\/B><BR /><FONT POINT-SIZE=\"10\">r² = 0.059<\/FONT>>, shape = ellipse]\n\"DrunkB_t1\" [label=<<B>DrunkB_t1 <\/B><BR /><FONT POINT-SIZE=\"10\">r² = 0.055<\/FONT>>, shape = hexagon]\n\"DrunkB_t2\" [label=<<B>DrunkB_t2 <\/B><BR /><FONT POINT-SIZE=\"10\">r² = 0.531<\/FONT>>, shape = hexagon]\n\"DrunkB_t3\" [label=<<B>DrunkB_t3 <\/B><BR /><FONT POINT-SIZE=\"10\">r² = 0.012<\/FONT>>, shape = hexagon]\nedge [\ncolor = black,\nfontsize = 9,\nfontcolor = black,\nfontname = helvetica,\ndir = both,\narrowhead = normal,\narrowtail = none\n]\n\"MMSAS\" -> {\"DrunkB_t3\"}[weight = 1, label = < 𝛽 = -0.011<BR /><FONT POINT-SIZE=\"7\">95% CI [-0.126, 0.062]   <\/FONT> >, penwidth = 0.555, style = dashed, color = black]\n\"BSAS\" -> {\"DrunkB_t3\"}[weight = 1, label = < 𝛽 = 0.022<BR /><FONT POINT-SIZE=\"7\">95% CI [-0.041, 0.1]   <\/FONT> >, penwidth = 0.61, style = solid, color = black]\n\"DrunkB_t1\" -> {\"DrunkB_t3\"}[weight = 1, label = < 𝛽 = 0.156<BR /><FONT POINT-SIZE=\"7\">95% CI [-0.011, 0.445]   <\/FONT> >, penwidth = 1.28, style = solid, color = black]\n\"DrunkB_t2\" -> {\"DrunkB_t3\"}[weight = 1, label = < 𝛽 = -0.123<BR /><FONT POINT-SIZE=\"7\">95% CI [-0.286, 0.008]   <\/FONT> >, penwidth = 1.115, style = dashed, color = black]\n\"MMSAS\" -> {\"DrunkB_t2\"}[weight = 1, label = < 𝛽 = 0.089**<BR /><FONT POINT-SIZE=\"7\">95% CI [0.024, 0.144]   <\/FONT> >, penwidth = 0.945, style = solid, color = black]\n\"BSAS\" -> {\"DrunkB_t2\"}[weight = 1, label = < 𝛽 = 0.1**<BR /><FONT POINT-SIZE=\"7\">95% CI [0.05, 0.172]   <\/FONT> >, penwidth = 1, style = solid, color = black]\n\"DrunkB_t1\" -> {\"DrunkB_t2\"}[weight = 1, label = < 𝛽 = 0.684***<BR /><FONT POINT-SIZE=\"7\">95% CI [0.584, 0.753]   <\/FONT> >, penwidth = 3.92, style = solid, color = black]\n\"MMSAS\" -> {\"DrunkB_t1\"}[weight = 1, label = < 𝛽 = 0.216***<BR /><FONT POINT-SIZE=\"7\">95% CI [0.136, 0.28]   <\/FONT> >, penwidth = 1.58, style = solid, color = black]\n\"MMSAS\" -> {\"BSAS\"}[weight = 1, label = < 𝛽 = 0.243***<BR /><FONT POINT-SIZE=\"7\">95% CI [0.165, 0.303]   <\/FONT> >, penwidth = 1.715, style = solid, color = black]\n\"BSAS\" -> {\"DrunkB_t1\"}[weight = 1, label = < 𝛽 = 0.05<BR /><FONT POINT-SIZE=\"7\">95% CI [0, 0.119]   <\/FONT> >, penwidth = 0.75, style = solid, color = black]\n}\n// ---------------------\n// The measurement model\n// ---------------------\n\nsubgraph construct_1 {\nnode [\nshape = box,\ncolor = dimgrey,\nfillcolor = white,\nstyle = filled,\nfontsize = 8,\nfontcolor = black,\nheight = 0.175,\nwidth = 1.72916666666667,\nfontname = helvetica,\nfixedsize = true\n]\n\"MMSAS_1\" [label = \"MMSAS_1\", shape = box]\n\"MMSAS_2\" [label = \"MMSAS_2\", shape = box]\n\"MMSAS_3\" [label = \"MMSAS_3\", shape = box]\n\"MMSAS_13\" [label = \"MMSAS_13\", shape = box]\n\"MMSAS_14\" [label = \"MMSAS_14\", shape = box]\n\"MMSAS_15\" [label = \"MMSAS_15\", shape = box]\n\"MMSAS_16\" [label = \"MMSAS_16\", shape = box]\n\"MMSAS_17\" [label = \"MMSAS_17\", shape = box]\n\"MMSAS_18\" [label = \"MMSAS_18\", shape = box]\n\"MMSAS_23\" [label = \"MMSAS_23\", shape = box]\n\"MMSAS_24\" [label = \"MMSAS_24\", shape = box]\n\"MMSAS_26\" [label = \"MMSAS_26\", shape = box]\nedge [\ncolor = dimgrey,\nfontsize = 7,\nfontcolor = black,\nfontname = helvetica,\nminlen = 1,\ndir = both\narrowhead = none\narrowtail = normal\n]\n\"MMSAS_1\" -> {\"MMSAS\"}[weight = 1000, label = < 𝜆 = 0.121 >, penwidth = 0.863, style = solid, color = dimgrey]\n\"MMSAS_2\" -> {\"MMSAS\"}[weight = 1000, label = < 𝜆 = 0.062 >, penwidth = 0.686, style = solid, color = dimgrey]\n\"MMSAS_3\" -> {\"MMSAS\"}[weight = 1000, label = < 𝜆 = -0.002 >, penwidth = 0.506, style = dashed, color = dimgrey]\n\"MMSAS_13\" -> {\"MMSAS\"}[weight = 1000, label = < 𝜆 = 0.787*** >, penwidth = 2.861, style = solid, color = dimgrey]\n\"MMSAS_14\" -> {\"MMSAS\"}[weight = 1000, label = < 𝜆 = 0.636*** >, penwidth = 2.408, style = solid, color = dimgrey]\n\"MMSAS_15\" -> {\"MMSAS\"}[weight = 1000, label = < 𝜆 = 0.885*** >, penwidth = 3.155, style = solid, color = dimgrey]\n\"MMSAS_16\" -> {\"MMSAS\"}[weight = 1000, label = < 𝜆 = 0.486*** >, penwidth = 1.958, style = solid, color = dimgrey]\n\"MMSAS_17\" -> {\"MMSAS\"}[weight = 1000, label = < 𝜆 = 0.465*** >, penwidth = 1.895, style = solid, color = dimgrey]\n\"MMSAS_18\" -> {\"MMSAS\"}[weight = 1000, label = < 𝜆 = 0.46*** >, penwidth = 1.88, style = solid, color = dimgrey]\n\"MMSAS_23\" -> {\"MMSAS\"}[weight = 1000, label = < 𝜆 = 0.425*** >, penwidth = 1.775, style = solid, color = dimgrey]\n\"MMSAS_24\" -> {\"MMSAS\"}[weight = 1000, label = < 𝜆 = 0.069 >, penwidth = 0.707, style = solid, color = dimgrey]\n\"MMSAS_26\" -> {\"MMSAS\"}[weight = 1000, label = < 𝜆 = 0.888*** >, penwidth = 3.164, style = solid, color = dimgrey]\n\n}\nsubgraph construct_2 {\nnode [\nshape = box,\ncolor = dimgrey,\nfillcolor = white,\nstyle = filled,\nfontsize = 8,\nfontcolor = black,\nheight = 0.175,\nwidth = 1.72916666666667,\nfontname = helvetica,\nfixedsize = true\n]\n\"BSAS_1\" [label = \"BSAS_1\", shape = box]\n\"BSAS_2\" [label = \"BSAS_2\", shape = box]\n\"BSAS_3\" [label = \"BSAS_3\", shape = box]\n\"BSAS_4\" [label = \"BSAS_4\", shape = box]\n\"BSAS_5\" [label = \"BSAS_5\", shape = box]\n\"BSAS_6\" [label = \"BSAS_6\", shape = box]\n\"BSAS_7\" [label = \"BSAS_7\", shape = box]\n\"BSAS_8\" [label = \"BSAS_8\", shape = box]\n\"BSAS_9\" [label = \"BSAS_9\", shape = box]\n\"BSAS_10\" [label = \"BSAS_10\", shape = box]\n\"BSAS_11\" [label = \"BSAS_11\", shape = box]\nedge [\ncolor = dimgrey,\nfontsize = 7,\nfontcolor = black,\nfontname = helvetica,\nminlen = 1,\ndir = both\narrowhead = none\narrowtail = normal\n]\n\"BSAS_1\" -> {\"BSAS\"}[weight = 1000, label = < 𝜆 = 0.305** >, penwidth = 1.415, style = solid, color = dimgrey]\n\"BSAS_2\" -> {\"BSAS\"}[weight = 1000, label = < 𝜆 = 0.601*** >, penwidth = 2.303, style = solid, color = dimgrey]\n\"BSAS_3\" -> {\"BSAS\"}[weight = 1000, label = < 𝜆 = 0.726*** >, penwidth = 2.678, style = solid, color = dimgrey]\n\"BSAS_4\" -> {\"BSAS\"}[weight = 1000, label = < 𝜆 = 0.537*** >, penwidth = 2.111, style = solid, color = dimgrey]\n\"BSAS_5\" -> {\"BSAS\"}[weight = 1000, label = < 𝜆 = 0.278* >, penwidth = 1.334, style = solid, color = dimgrey]\n\"BSAS_6\" -> {\"BSAS\"}[weight = 1000, label = < 𝜆 = 0.326** >, penwidth = 1.478, style = solid, color = dimgrey]\n\"BSAS_7\" -> {\"BSAS\"}[weight = 1000, label = < 𝜆 = 0.47*** >, penwidth = 1.91, style = solid, color = dimgrey]\n\"BSAS_8\" -> {\"BSAS\"}[weight = 1000, label = < 𝜆 = 0.213 >, penwidth = 1.139, style = solid, color = dimgrey]\n\"BSAS_9\" -> {\"BSAS\"}[weight = 1000, label = < 𝜆 = -0.034 >, penwidth = 0.602, style = dashed, color = dimgrey]\n\"BSAS_10\" -> {\"BSAS\"}[weight = 1000, label = < 𝜆 = 0.349** >, penwidth = 1.547, style = solid, color = dimgrey]\n\"BSAS_11\" -> {\"BSAS\"}[weight = 1000, label = < 𝜆 = 1.115*** >, penwidth = 3.845, style = solid, color = dimgrey]\n\n}\nsubgraph construct_3 {\nnode [\nshape = box,\ncolor = dimgrey,\nfillcolor = white,\nstyle = filled,\nfontsize = 8,\nfontcolor = black,\nheight = 0.175,\nwidth = 1.72916666666667,\nfontname = helvetica,\nfixedsize = true\n]\n\"T1_Binge_drinking\" [label = \"T1_Binge_drinking\", shape = box]\n\"T1_DrunkDrunkenness\" [label = \"T1_DrunkDrunkenness\", shape = box]\nedge [\ncolor = dimgrey,\nfontsize = 7,\nfontcolor = black,\nfontname = helvetica,\nminlen = 1,\ndir = both\narrowhead = none\narrowtail = normal\n]\n\"T1_Binge_drinking\" -> {\"DrunkB_t1\"}[weight = 1000, label = < 𝜆 = 0.879*** >, penwidth = 3.137, style = solid, color = dimgrey]\n\"T1_DrunkDrunkenness\" -> {\"DrunkB_t1\"}[weight = 1000, label = < 𝜆 = 0.856*** >, penwidth = 3.068, style = solid, color = dimgrey]\n\n}\nsubgraph construct_4 {\nnode [\nshape = box,\ncolor = dimgrey,\nfillcolor = white,\nstyle = filled,\nfontsize = 8,\nfontcolor = black,\nheight = 0.175,\nwidth = 1.72916666666667,\nfontname = helvetica,\nfixedsize = true\n]\n\"T2_Binge_drinking\" [label = \"T2_Binge_drinking\", shape = box]\n\"T2_Drunkenness\" [label = \"T2_Drunkenness\", shape = box]\nedge [\ncolor = dimgrey,\nfontsize = 7,\nfontcolor = black,\nfontname = helvetica,\nminlen = 1,\ndir = both\narrowhead = none\narrowtail = normal\n]\n\"T2_Binge_drinking\" -> {\"DrunkB_t2\"}[weight = 1000, label = < 𝜆 = 0.899*** >, penwidth = 3.197, style = solid, color = dimgrey]\n\"T2_Drunkenness\" -> {\"DrunkB_t2\"}[weight = 1000, label = < 𝜆 = 0.882*** >, penwidth = 3.146, style = solid, color = dimgrey]\n\n}\nsubgraph construct_5 {\nnode [\nshape = box,\ncolor = dimgrey,\nfillcolor = white,\nstyle = filled,\nfontsize = 8,\nfontcolor = black,\nheight = 0.175,\nwidth = 1.72916666666667,\nfontname = helvetica,\nfixedsize = true\n]\n\"T3_Binge_drinking\" [label = \"T3_Binge_drinking\", shape = box]\n\"T3_Drunkenness\" [label = \"T3_Drunkenness\", shape = box]\nedge [\ncolor = dimgrey,\nfontsize = 7,\nfontcolor = black,\nfontname = helvetica,\nminlen = 1,\ndir = both\narrowhead = normal\narrowtail = none\n]\n\"DrunkB_t3\" -> {\"T3_Binge_drinking\"}[weight = 1000, label = < 𝜆 = 0.72*** >, penwidth = 2.66, style = solid, color = dimgrey]\n\"DrunkB_t3\" -> {\"T3_Drunkenness\"}[weight = 1000, label = < 𝜆 = 0.948*** >, penwidth = 3.344, style = solid, color = dimgrey]\n\n}\n}","config":{"engine":"dot","options":null}},"evals":[],"jsHooks":[]}</script>
save_plot('./2_Aresi2021_files/Aresi2021_PLS.png')
## NULL

plot

The results substantiate higher motivation to study abroad (MMSAS) is associated with higher sociocultural adaptation (BSAS), which, in turn, is associated also with drunken behaviour at time 2. So, the BSAS is portrayed as a mediator in the MMSAS’ influence on drunken behaviour.

Reliability

But the above results are valid just if the scales used are valid and reliable.

fit_summary$reliability
##           alpha  rhoC   AVE  rhoA
## MMSAS     0.875 0.766 0.289 0.889
## BSAS      0.863 0.751 0.280 0.909
## DrunkB_t1 0.672 0.859 0.753 0.675
## DrunkB_t2 0.740 0.885 0.793 0.743
## DrunkB_t3 0.631 0.827 0.708 0.901
## 
## Alpha, rhoC, and rhoA should exceed 0.7 while AVE should exceed 0.5